#### Climate, environment and ICT's

Sustainable and Responsible Data Center Ecosystem seminar

> 22.5.2025 Antti Sipilä, TIEKE ry

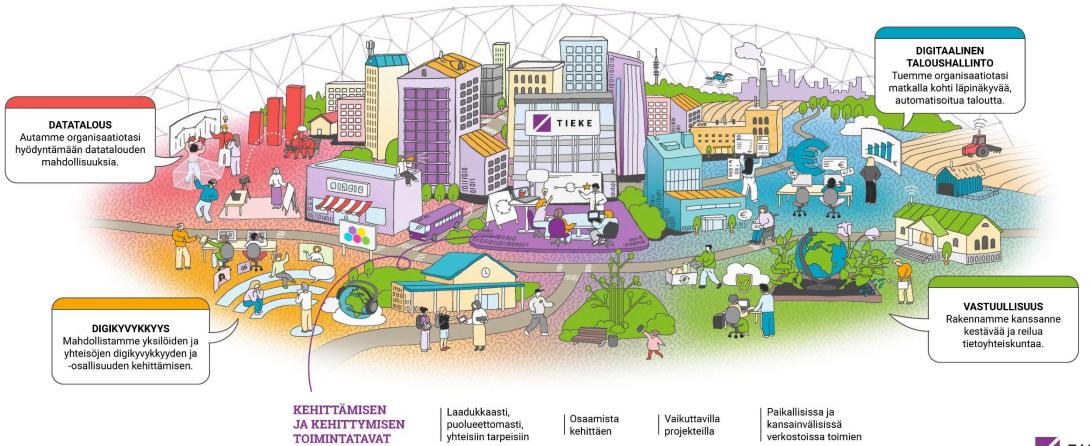
Vibreän siirtymän ICT-ekosysteemi



Euroopan unionin osarahoittama



#### TIEKE


- Founded in 1981
- O 14 employees



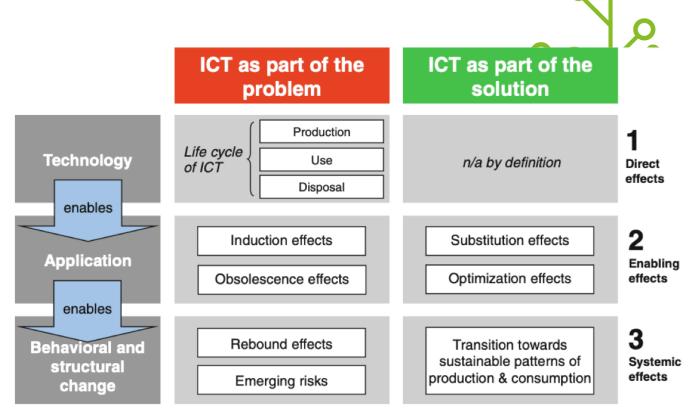
- Creating a sustainable and humane information society through projects and cooperation with partners
- Ask about membership from tieke@tieke.fi



#### **TIEKE's strategic themes**






# Sustainability in information society

VISIRI

Euroopan unionin osarahoittama 029

# Why Sustainable ICT?

- Negative effects, footprint is large
- ICT's have a substantial handprint
- Effects have different scopes

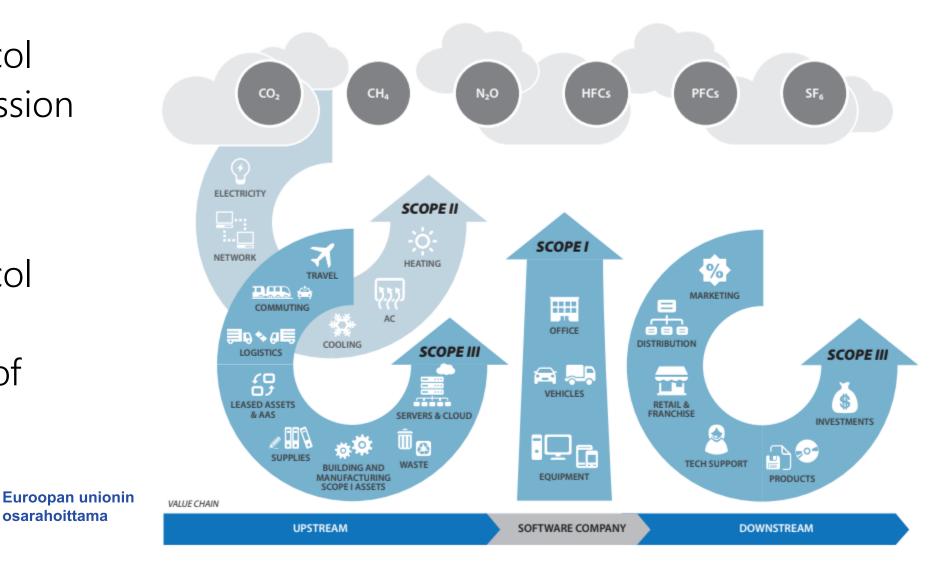




# **Information Society**

- We are embedded in tech, "fishes in water"
- In modern societies we...
  - Date in Tinder, Bumble etc
  - Keep up with friends in FB, IG, Snap, Whatsapp etc.
  - Order stuff from eCommerce
  - Pay our bills with eBanking
  - Watch our entertainment from streaming services
- There is no sustainable ICT, there is sustainability and ICT is integral part of it in modern society

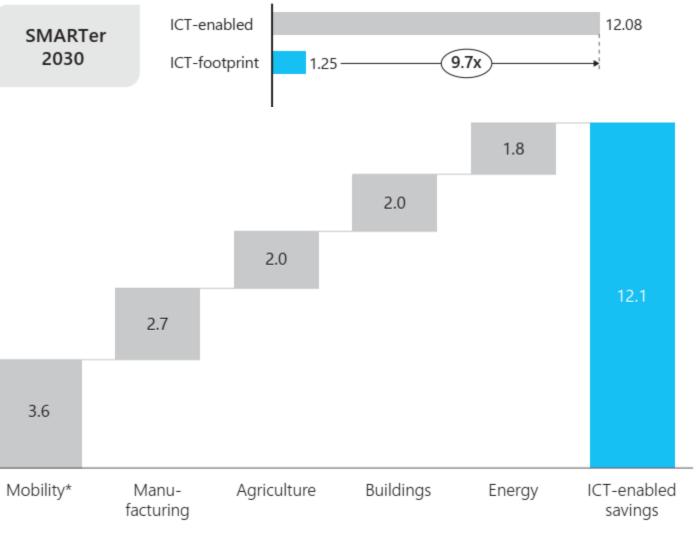



### **Carbon Footprint**

osarahoittama

- GHG-protocol Ο
- Carbon emission calculations
- Uses CO<sup>2</sup>- $\bigcirc$ equivalent
- GHG-protocol Ο
- 3 scopes Ο

**VISIIRI**。


Ownership of Ο emissions?



#### **Carbon handprint**

- ICT's positive effects in
- Information society, data economy
- Potential is 10x footprint
- Uses CO<sup>2</sup> equivalent

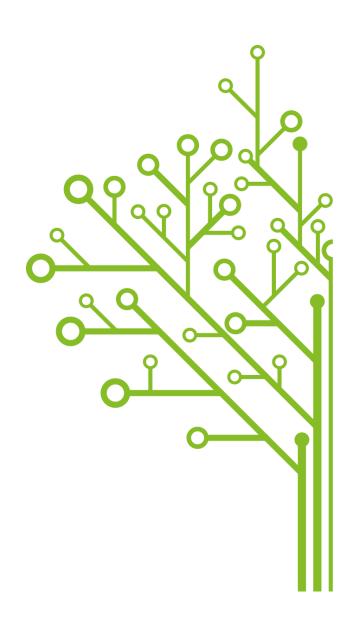




\* Mobility solutions consider ICT-enabled improvements to private and commercial mobility and additionally consider the reduced need to travel from various sectors, including health, learning, commerce, etc.

#### **ICT's effects**

**VISIR** 


Euroopan unionin osarahoittama

### **ICT's Climate Effects**

#### o Emissions

- ICT field: 1,25 2,07 Gt CO<sup>2</sup>e (2.1 3.9 %, EU)
  - Apple: 16,1 M tonnes CO<sup>2</sup>e
  - Meta: 14,1 M tonnes CO<sup>2</sup>e
  - Microsoft: 14,5 M tonnes CO<sup>2</sup>e
  - Google: 14,3 M tonnes CO<sup>2</sup>e
- Bitcoin 65 M tonnes CO<sup>2</sup>e
- Air travel industry ~1.2 Gt CO<sup>2</sup>e
- Global total: ~53 Gtonnes (53 000 000 000 tonnes) CO<sup>2</sup>e
- Water usage
  - Datacenters alone use 16,4 billion litres globally
  - Average person in Finland uses 119 litres/day





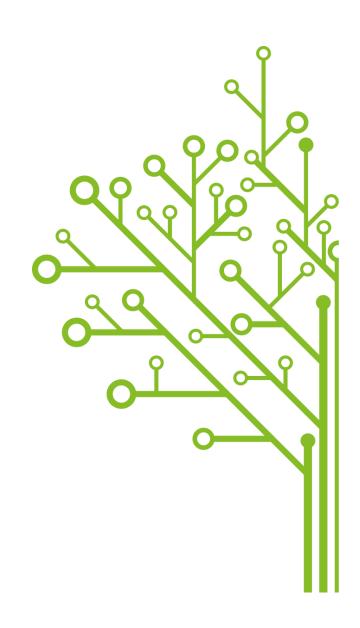
### **ICT's Climate Effects**

#### o Email

- Text email ~4 g CO<sup>2</sup>e, with pdf/doc~20 g or pic files ~50 g
- Letter mail (snail mail) by Royal Mail, 20-25 g/kirje
- elnvoice and structured messages less than 1 g CO<sup>2</sup>e
- Total emails send in the world approx. 7 400 billion
- Average car: 180 g/km, 45 emails = 1 km by car
- Average search engine query 0,1 0,2 g  $CO^2e$
- One ChatpGPT query 4,3 g CO<sup>2</sup>e
- Whatsapp msg 0,2 CO<sup>2</sup>e, text msg 0,014 CO<sup>2</sup>e



### **ICT's Environmental Effects**


eWaste

- Total globally 64,8 milj. tonnia, increase ~2.6 milj. tonnes/year
- Recycling rate 22,3 % globally, 49 % in Finland
- Trending to 100 M tonnes per year by 2038 Conflict minerals
- Produced in the most vulnerable parts of the world, t.ex. CAR
- Produced in inhuman conditions, control drives conflict
- Definition: Gold, tantalum, tin, tungsten, (copper)

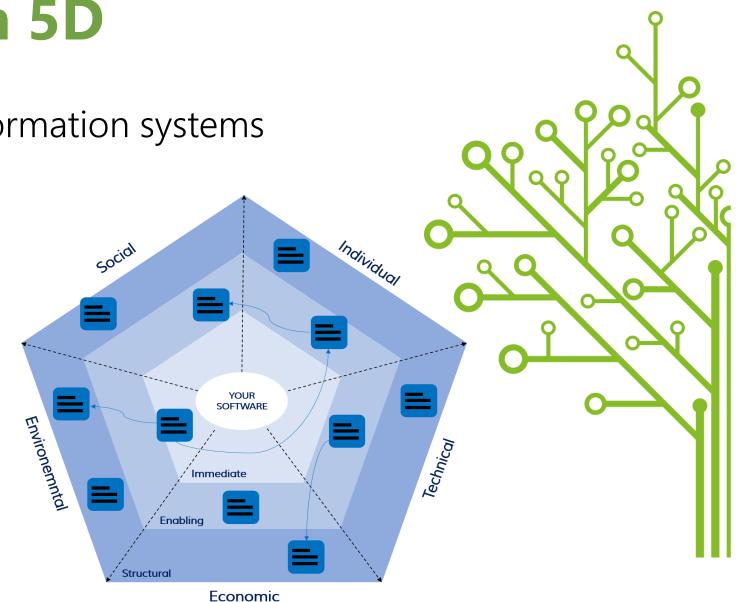
ICT-waste

- Includes 800-1000 different chemicals
- Many of them toxic (PVC, BFR, CR(VI), light/heavymetals) RoHS ja WEEE directives in EU





#### **Green in Practice**


VISIE

Euroopan unionin osarahoittama

# **Sustainability in 5D**

- Model for design of information systems
  - Environmental
  - Social
  - Economic
  - Human/Individual
  - Technical
- Three scopes of effects
  - Direct
  - Indirect
  - Structural





# **Information Systems in 5D**

- Environment Usage of power and device resources by the system, e.g. Tech and power demands of AI
- Economy Cost efficiency of information systems for the procurer and the producer, e.g. Apotti
- Social Societal and cultural impacts of the information systems, e.g. AirBnB
- Individual Individual welfare, usability, design, ergonomy etc., e.g. services for aging population
- Technical Ability of the information systems to adapt to changing circumstances and requirements e.g. Nokia phones





# **Sustainability thinking**

- Sustainable development is not a goal, it is a way of thinking
- Sustainability is a scalable property
- Sustainability is a balance, there are positive and negative effects
- Sustainability is systemic, effects are direct, indirect and structural
- Question: How can I do this more sustainably?



#### Data Centers and sustainability

VISIIRI.

Euroopan unionin osarahoittama

### **Climate and environment**

- Consumption of energy and resources
  - Energy usage, can it be green?
  - Water usage, can it be mitigated?
  - LCA of equipment and e-waste management
  - Land usage
- o Benefits
  - Centralization of computation is effective
  - Controlled environment for equipment longevity
  - Virtualization and cloud computation
  - Virtual economy instead of material consumption





### Individuals and society

- Whose data and who benefits?
  - Electricity costs, do we all pay the bill?
  - Data centers, services and who owns them?
  - What is the purpose and are there strings attached?
  - How does digital overconsumption affect us? Prof J. Haidt
- How do people and the society benefit?
  - Public cloud under Finnish regulatory oversight and jurisdiction, could it be safer to use this way?
  - New companies, possibilities for R&D and academic co-op
  - Enabling effects, such as backbone network strengthening, more undersea connections to wider world





#### Economy

#### • Refining the centers

- "Data center is low refinement level ICT" Prof Manner
- Most centers are hyperscalers, what is their benefit?
- Do the economic benefits stay in Finland?
- Can we build more refined products on them?
- Can we produce enough electricity?
- Economic benefits
  - Building centers is a boost for local economy
  - Data centers need services around them
  - Direct and indirect tax income
  - Potential for highly skilled labour immigration





#### Thank you!

Sustainability is the starting point, it is a way of thinking

Ekosysteemi: <u>https://greenict.fi/</u> LinkedIn: Sustainable ICT Finland –ryhmä

Nettisivut: <u>https://tieke.fi</u> ja Youtube @tiekery

Tule nykäisemään hihasta virtuaalisesti!

Sähköposti/Teams: antti.sipila@tieke.fi

Sosiaalinen media: @tiekery.bsky.social | <u>https://linkedin.com/in/tiekery/</u> @sipila.bsky.social | <u>https://www.linkedin.com/in/sipila/</u>



